当前位置:首页>技术应用>正文

三峡水利枢纽接地技术的研究

作者:武汉国电西高电气有限公司时间:2014-03-18 我要发布

摘要:三峡水利枢纽工程地处花岗岩地带,电站装机数量多,单机容量大,500 kV发生单相接地故障时接地装置的入地电流可达33.3 kA。按规范要求接地装置电位不应超过2000 V,三峡电站的接地电阻应不超过0.06Ω。当电站接地装置处于等效电阻率为1000Ω˙m的地区时,按估算所需接地网面积为70 km2,这是不可能做到的。故立题进行研究。

1 前言

三峡水利枢纽工程规模巨大,电站共安装26台单机容量700MW的水轮发电机组,在电力系统中占有举足轻重的地位。三峡工程的接地装置设计能否满足要求是关系到电站安全运行的重大问题。由于三峡枢纽工程地处花岗岩地带,属高电阻率地区。按DL/T 5091-1999《水力发电站接地设计技术导则》规定,大接地短路电流系统的水电厂接地装置的接地电阻要满足R≤2000/I。三峡电站网外发生500 kV单相接地短路故障的最大入地短路电流可达到33.3 kA,电站接地电阻应不超过0.06 W。若电站接地装置所在地区的等效电阻率为1 kW˙m,可估算出接地装置的面积为S = (0.5ρ/R)2 = (0.5/0.06)2 = 69.5km2, 这是不可能的。为此,1995年提出了“九五” 国家攻关课题《三峡枢纽接地技术研究》,承担单位有长江水利委员会设计院,武汉水利电力大学(现武汉大学),任务是编制立体接地装置分布、立体电阻率分布的接地电阻计算程序。若接地装置允许电位升高超过2000V需研究该值还允许提高到多少,以及如何采取电站接地网的均压、防反击和隔离措施等。

2 三峡水利枢纽接地装置的布置

三峡枢纽工程的各种构筑物有大量的结构钢筋,在接地设计中应充分利用枢纽建筑物的自然接地体。根据三峡枢纽的布置,接地装置由6部分组成:①大坝接地装置;②左岸电站接地装置;③右岸电站接地装置;④泄水闸接地装置;⑤永久船闸接地装置;⑥临时船闸和升船机接地装置。

2.1 大坝接地装置

三峡大坝全长约为2km,大坝上游迎水面结构表层钢筋网孔为20m×20m,作为垂直地网面积为239000m2。在上游库底敷设人工接地网,网孔为50m×50m,水平地网面积为245000m2。

2.2 左、右岸电站接地装置

三峡左、右岸电站接地装置布置相同,充分利用水下钢结构物连成一体,钢结构物有:尾水护坦结构钢筋、尾水底板结构钢筋、蜗壳、锥管、进水压力钢管等。在主、副厂房各楼层的底板四周还设置了接地干线,每层的电气设备接地线就近与接地干线连接,每层楼板接地干线与垂直接地干线连成一体。避雷器接地引下线直接引至进水压力钢管。布置变压器、电抗器的82 m高程平台和副厂房92 m高程GIS室皆利用楼板结构钢筋作为接地装置。500kV GIS室敷设两条接地铜母线,GIS设备接地线与铜母线连接,铜母线与楼板中地网多点连接。副厂房顶上的电气设备接地装置与副厂房顶上人工地网相连接。左岸电站水平接地网面积为28800m2,右岸电站水平接地网面积为36400m2。

2.3 泄水闸接地装置

泄水闸全长583m,有22个底孔、23个深孔和22个表孔。闸门槽钢结构与上游迎水面结构钢筋连接,闸门槽钢结构顶端与坝顶门机轨道连接,底端与泄洪坝段的深孔底板接地网和1~7号泄洪坝段下游护坦接地网连接。泄洪坝段接地网面积为7200m2。

2.4 永久船闸接地装置

双线五级船闸全长1600m,将船闸的闸室底板和侧墙结构钢筋与贯五级船闸两侧四条输水廊道结构钢筋连接一体,上下游导航墙的表层结构钢筋与船闸侧墙钢筋和人字门连接一起,永久船闸接地网面积为316000m2。

2.5 临时船闸和升船机接地装置

临时船闸为一级船闸,船闸上下游导航墙表层结构钢筋与闸室底板结构钢筋和人字门连接在一起。临时船闸接地网面积为13300m2。利用升船机滑道将升船机蓄水槽接地网与金属沉船箱连接,蓄水槽接地网面积为3300m2。临时船闸接地网与升船机接地网紧邻,将两接地网连接在一起。

以上6部分接地装置是通过大坝上游迎水面结构表层钢筋、贯穿整个大坝电缆廊道的接地干线、基础廊道接地装置和坝面门机轨道连接在一起的。

3 接地电阻的计算方法和程序验证

三峡大坝区域散流介质分布极其复杂,电导特性各不相同,用常规接地计算方法无法计算分析三峡枢纽如此复杂的立体地网的接地参数。武汉水利电力大学采用边界元算法对三峡枢纽接地装置的接地参数作了数值计算和分析,编制了计算接地电阻的程序,完全在Win98/2000环境下利用面向对象的32位C++开发平台完成了三峡接地计算软件的编制工作以及大规模的数值计算。

首先根据对三峡枢纽地质结构的全面分析,确定了可描述三峡大坝地区散流媒质特性的物理模型,进而通过对三维电流场位势问题的域内积分方程和边界积分方程的推导,建立了能有效进行三峡接地计算的数学模型。计算中考虑了大坝上下游水位、土壤复合分层以及长江河床现状的影响,突出了不同散流媒质电导特性的差异。利用在三峡模型基础上编制的程序可以计算均匀土壤和双层土壤中的一些简单或规则的接地体的接地电阻值,根据计算结果与已有的理论或计算结果的一致性,间接地验证了计算公式和程序的正确性。

为了验证所编制的接地电阻计算程序的正确性,1997年10月24~30日在北京东辰科学技术研究所的户外沙池进行了两种地网模型(不同尺寸的倒T型地网)和土壤分层(水平3层、垂直4层)的模拟试验,测量的接地电阻值与程序计算的接地电阻值误差在10%以内。1998年3月17日在武汉水利电力大学的琼脂电解槽中(电导媒质为水和琼脂)进行了两种地网模型(L型地网和倒T型地网)和土壤分层(水平2层、垂直3层)的小比例模拟试验,测量的接地电阻值与程序计算的接地电阻值误差在8%以内。

利用计算程序对湖北省高坝洲水电站接地装置进行了计算,电站接地电阻的计算值为0.3914Ω。1999年6月21日对电站接地电阻进行了测量,测量采用电流电压表任意夹角法,测得电站接地电阻为0.369~0.384Ω。测量的接地电阻值与程序计算的接地电阻值误差为2%~6%。

4 三峡水利枢纽电阻率的选取

根据物探部门提供的电阻率资料:长江水电阻率为50Ω˙m;两岸表层土壤电阻率平均为1000Ω˙m;岸边与河床深层均为花岗岩,电阻率为 15000Ω˙m;江底岩石的厚度为30m, 深层岩石的电阻率为22000Ω˙m。按上述电阻率通过程序计算,三峡电站的接地电阻达到1.2Ω,远大于规范中0.06Ω的要求。为了获得三峡枢纽准确的电阻率原始资料,1999年3月3日对已完工的单项工程临时船闸的接地电阻进行了测量,测得接地电阻为0.369Ω。然后通过计算程序的反复试计算,算出三峡枢纽电阻率的实际近似值,水电阻率50Ω˙m,岸边与河床底岩石电阻率为280Ω˙m;深层岩石电阻率为4400Ω˙m。说明长期浸泡在水中的岩石电阻率远低于完全干燥的岩石电阻率。

5 三峡水利枢纽接地电阻的计算

5.1 三峡电站500kV系统单相短路电流

三峡电站分左、右岸两个电站,左岸电站装机14台,右岸装机12台,左岸电站比右岸电站与系统的联系紧密,左岸电站的500 kV单相短路电流比右岸电站大。两电站500 kV配电装置为3/2接线,左、右电站间无直接的电气连接,左、右电站的母线都分为两段。左岸电站 500kV配电装置的母联断路器合上时为一厂运行,断开时为二厂运行。当500kV系统发生单相接地故障时,单相短路电流、电站和系统供给电流、地网内和地网外短路的入地短路电流见表1。

5.2 三峡枢纽接地电阻的计算

由于三峡枢纽接地装置的面积很大,同接地体材料为钢材,具有较大的内电感,接地网是个不等电位体,按等电位体的计算程序计算应加以修正,计算的接地电阻修正系数为1.75。电站初期的运行水位为:夏季洪水期上游水位为135m,下游水位为70m,冬季枯水期上游蓄水位为135m,下游水位为66m;电站终期的运行水位为:夏季洪水期上游防洪水位为145m,下游水位为66m,冬季枯水期上游蓄水位为175m,下游水位为66m。根据水下接地网面积用程序计算得到三峡电站接地电阻值如下:

(1)初期洪水期枢纽接地电阻值为0.199Ω。

(2)初期枯水期枢纽接地电阻值为0.200Ω。

(3)终期洪水期枢纽接地电阻值为0.168Ω。

(4)终期枯水期枢纽接地电阻值为0.162Ω。

初期左岸电站分二厂运行时,接地装置电位升高不超过3650V;终期左岸电站分二厂运行时,接地装置电位升高不超过3066V。当左岸电站为一厂运行时,接地装置电位升高为6660V,若要接地装置电位升高不超过5000V,则左岸电站运行机组不能超过11台。最终的运行机组台数应根据接地电阻的测量结果决定。

6 三峡电站地网电位允许升高值

按规范要求“大接地短路电流系统的水力发电厂接地装置的接地电阻宜符合R≤2000/I”,即要求接地装置的电位不宜超过2000V。这对三峡电站显然是不现实的,可以提高多少?需进行一系列的试验研究,关键是低压装置、控制电缆和继电器的工频伏秒特性。

电缆的工频伏秒特性是比较平坦的,当电缆的屏蔽层剥掉4cm,电缆可承受工频电压15kV。继电器的工频伏秒特性更平坦,在0~30s的范围内可以认为是一条水平直线,继电器可承受工频电压5.5kV。故电站接地装置的允许电位升高到5000V应该是容许的,只需将电缆的屏蔽层剥掉1cm就可以了。

7 三峡电站接地装置的均压和隔离措施

7.1 均压措施

由于三峡电站入地电流较大,接地装置电位较高,使接触电位和跨步电压增高,会危及人身安全,因此必须对高压配电装置的接地装置进行均压设计。厂坝间副厂房 82m高程布置有500kV主变压器、并联电抗器、避雷器等电气设备,若利用楼板的结构钢筋焊成5m×5m的网孔,接触系数Kj为0.048,跨步系数KK为0.3,而允许接触系数Kj为0.071, 允许跨步系数KK为0.12,跨步电压不满足要求,需敷设帽檐。布置在主变压器室楼上的500kV GIS,同样可利用楼板结构钢筋焊成5m×5m的网孔,其接触系数Kj为0.048, 允许接触系数Kj为0.1。布置有高压电气设备的副厂房顶,由屋顶结构钢筋焊成5m×5m的网孔,其接触系数Kj为0.048, 允许接触系数Kj为0.071。因此应在82m高程地网边缘经常有人出入的通道处敷设与接地网相连的“帽檐式”均压带。

此外,对于所有明敷金属管道,都应有多点良好的接地以避免对人身安全带来的危害。

7.2 改善地网内部的电位差

由于三峡枢纽地网较大,地网对角线达3500m,地网电位差达100%,左岸电站地网对角线600m,地网电位差也达到50%,为了减少地网电位差,在有可能对低压设备产生较高电位差的高程上,敷设1根铜带以减少地网电位差。左岸电站共敷设4条贯穿全厂的200 mm2铜带,在副厂房82m高程下部和75.3m高程下部各敷设1条贯穿左岸电站的铜带; GIS室楼板内横向敷设2条铜带,以减小控制设备和低压电气设备所承受的地网电位差,这样电位差可控制在5%以下。如地网允许电位升高到5000V, 控制设备和低压电气设备上的电位差也不会超过250V。不会对这些设备产生危害。

电站内未安装低压避雷器,较低电压等级的避雷器只有10 kV金属氧化物避雷器,避雷器额定电压为17.5 kV。接地装置的电压升高到5 kV时暂态电压为9 kV,也不会对避雷器产生反击。

7.3 转移电位的隔离措施

三峡电站对外通信采用光纤传输,左、右岸电站间通信线和信号线也采用光纤传输。电站无低压配电线路向电站外送电,左、右岸电站间仅有10kV厂用电有电气联系,而10kV电压等级的绝缘能耐压28kV水平。

接地装置区域内的金属管道应与接地装置多点连接,以避免在厂区发生危险,引出接地装置外的金属管道宜埋入地中引出。

8 结论

(1)建立了三峡电站接地电阻计算模型,采用边界元法编制计算电站复杂接地网和不同散流介质分布的接地电阻计算程序,并对计算程序进行了一系列的验证试验,误差在10%以内。

(2)物探部门提供的三峡枢纽电阻率远高于经在临时船闸实测并通过计算程序试算得出的枢纽电阻率,说明长期浸泡在水中的岩石电阻率远低于完全干燥的岩石电阻率。

(3)通过对电缆和继电器的工频伏秒特性进行试验,电站接地装置的电位升高到5000V是容许的。

(4)三峡电站500kV系统在地网内和地网外发生单相短路时,左岸电站一厂运行时入地电流分别为20.6kA和33.3kA,二厂运行时入地电流分别为11.27kA和18.25kA。

(5)利用计算程序计算得到三峡电站初期运行水位枢纽接地电阻为0.200Ω,终期运行水位枢纽接地电阻为0.168Ω。初期和终期左岸电站分二厂运行时接地装置的电位升高不超过3650V。左岸电站以一厂运行时运行机组不超过11台时接地装置电位升高不超过5000V。

(6)三峡接地装置材质为钢材,具有内电感,地网内电位差较大。为改善地网内部的电位差,可敷设几条铜质接地带以减小接地钢带上的电位差。

参考文献

[1] DL/T 5091-1999. 水力发电厂接地设计技术导则[M]. 中国电力出版社, 1999, 11.

北极星光伏商务通微信

北极星电力商务通微博

扫一扫
关注北极星商务通官方微信公众号及微博,及时获取最新资讯。

北极星电力网声明:此资讯系转载自北极星电力网合作媒体或互联网其它网站,北极星电力网 登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考。

供应商档案

武汉国电西高电气有限公司
企业认证: 企业已认证已认证
所在地区: 湖北
主营产品:

直流高压发生器,试验变压器,工频耐压试验装置,氧化锌避雷器测试仪,高压开关综合测试仪,精密数字高压表,干式试验变压器,高压组合电器试验设备,冲击电流发生器,局部放电检测系统,六油杯绝缘油介电强度测试系统,变压器绕组变形测试仪,电力变压器线圈加热装置,电力变压器绕组变形(阻抗法)测试仪,全自动绝缘油介电强度测试仪,智能电缆带电识别仪,数字音频寻线器,多倍频感应耐压试验装置,PT特性测试仪,高低压开关柜通电试验台,高压设备故障激光定位仪,智能绝缘电阻测试仪,双钳接地电阻测试仪,可调高压数字兆欧表,电能质量测试仪,发电机转子交流阻抗测试仪,火电一次调频与机组同期仿真测试仪,便携式氢气湿度测量仪,语言验电器,接地棒_令克棒_放电棒_操作杆,异频介损自动测试仪等。

收藏此企业